Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## catena-Poly[[bis( $\mu_2$ -4-aminobenzenesulfonato- $\kappa^2$ O:O)disilver]-bis( $\mu_2$ -4,4'bipyridine- $\kappa^2 N:N'$ )]

#### Guang-Chuan Ou,\* Min Zhang, Xian-You Yuan and Yong-Qiang Dai

Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China Correspondence e-mail: ouguangchuan@yahoo.com.cn

Received 30 September 2008; accepted 16 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.088; data-to-parameter ratio = 15.6.

In the title compound,  $[Ag_2(C_6H_6NO_3S)_2(C_{10}H_8N_2)_2]_n$ , the  $Ag^I$  atom is four-coordinated by two N atoms from two symmetry-related 4,4'-bipyridine (bipy) and two O atoms from two independent 4-aminobenzenesulfonate (ABS) ligands. The two inter-chain  $Ag^I$  atoms are bridged by two independent ABS ligands through weak Ag-O bonds and  $Ag\cdots Ag$  attractions, forming a ladder-like chain coordination polymer  $[Ag_2(ABS)_2(bipy)_2]_n$  parallel to [001], which is further linked to generate a two-dimensional structure *via*  $N-H\cdots O$  hydrogen-bonding interactions.

#### **Related literature**

For general background, see: Liu, Kuroda-Sowa *et al.* (2005); Liu, Liu *et al.* (2005); Feng *et al.* (2003); Wei *et al.* (2004); Dong *et al.* (2005); Bi *et al.* (2003); Ding *et al.* (2005); Yang *et al.* (2004). For related structures, see: Sampanthar & Vittal (2000); Tong *et al.* (2000).



#### **Experimental**

 Crystal data

  $[Ag_2(C_6H_6NO_3S)_2(C_{10}H_8N_2)_2]$  c = 11.433 (2) Å 

  $M_r = 872.46$   $\beta = 108.004 (4)^{\circ}$  

 Monoclinic,  $P2_1/n$   $V = 1579.8 (6) \text{ Å}^3$  

 a = 9.2105 (19) Å Z = 2 

 b = 15.774 (3) Å Mo K $\alpha$  radiation

 $\mu = 1.43 \text{ mm}^{-1}$ T = 173 (2) K

#### Data collection

| Bruker SMART CCD area-detector       |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Sheldrick, 1996)            |
| $T_{\min} = 0.585, T_{\max} = 0.847$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$   $wR(F^2) = 0.088$  S = 1.113375 reflections  $0.42 \times 0.13 \times 0.12 \text{ mm}$ 

7741 measured reflections 3375 independent reflections 2774 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.023$ 

217 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.79 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -0.69 \text{ e} \text{ Å}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $N3-H3B\cdots O2^{i}$ 0.88  | 2.04 | 2.850 (5) | 153 |
|-----------------------------|------|-----------|-----|
| $N3-H3C\cdots O3^{ii}$ 0.88 | 2.25 | 2.905 (4) | 131 |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) x - 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

The authors thank the Key Subject Construction Project of Hunan Province (grant No. 2006-180), the Scientific Research Project of the Hunan Provincial Finance Bureau and Education Department (grant No. 08C366), and the Foundation for University Key Teachers of the Education Department of Hunan Province for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2110).

#### References

- Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 1426–1428.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, B., Yi, L., Liu, Y., Cheng, P., Dong, Y. B. & Ma, J. P. (2005). Inorg. Chem. Commun. 8, 38–40.
- Dong, Y. B., Geng, Y., Ma, J. P. & Huang, R. Q. (2005). Inorg. Chem. 44, 1693– 1703.
- Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct. 650, 115–122.
- Liu, S. Q., Kuroda-Sowa, T., Konaka, H., Suenaga, Y., Maekawa, M., Mizutani, T., Ning, G. L. & Munakata, M. (2005). *Inorg. Chem.* 44, 1031–1036.
- Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). New J. Chem. 29, 474–478.
- Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117-120.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tong, M. L., Chen, X. M. & Seik, W. N. (2000). *Inorg. Chem. Commun.* **3**, 436–438.
- Wei, Q., Nieuwenhuyzen, M., Meunier, F., Hardacre, C. & James, S. L. (2004). J. Chem. Soc. Dalton Trans., pp. 1807–1811.
- Yang, J. H., Zheng, S. L., Yu, X. L. & Chen, X. M. (2004). Cryst. Growth Des. 4, 831–836.

supplementary materials

Acta Cryst. (2008). E64, m1587 [doi:10.1107/S160053680803804X]

## *catena*-Poly[[bis( $\mu_2$ -4-aminobenzenesulfonato- $\kappa^2 O:O$ )disilver]-bis( $\mu_2$ -4,4'-bipyridine- $\kappa^2 N:N'$ )]

## G.-C. Ou, M. Zhang, X.-Y. Yuan and Y.-Q. Dai

#### Comment

In the construction of inorganic–organic supramolecular complexes, the  $Ag^{I}$  is often a favorable candidate due to its flexible coordination modes and Ag–Ag attractions (Liu *et al.*, 2005; Dong *et al.*, 2005; Bi *et al.*, 2003; Ding *et al.*, 2005; Yang *et al.*, 2004). Bipy (4,4'-bipyridine) and ABS (4-aminobenzenesulfonic acid) are useful building blocks because they contain bifunctional groups, which can coordinate with metal ions in various coordination modes through the oxygen atoms of sulfonic group and the nitrogen atoms of pyridyl ring (Liu *et al.*, 2005; Feng *et al.*, 2003; Wei *et al.*, 2004). Therefore, we also extended these investigations to the use of the ligand ABS and obtained various framework structures. In this paper, we report the structure of the title compound, (I).

As illustrated in Fig. 1, each  $Ag^{I}$  atom in the title compound is four-coordinated by two nitrogen atoms from bipy (Ag1-N1 = 2.187 (3) Å, Ag1-N2 = 2.179 (3) Å) and two oxygen atoms from two independent ABS (Ag1-O1 = 2.572 (2) Å) and Ag1-O1# = 2.654 (2) Å, # 1 - x, -y, 1 - z). These coordination modes are different from those found in structures similar to (I), wherein both oxygen atoms of acetic acid are linked to Ag atoms (Sampanthar & Vittal, 2000; Tong *et al.*, 2000). The two inter-chain Ag<sup>I</sup> atoms are bridged by two independent ABS ligands through week Ag-O bonds and Ag-Ag attractions (Ag1-Ag1# = 3.903 Å, # 1 - x, -y, 1 - z), forming a one-dimensional ladder-like chain coordination polymer  $[Ag_2(bipy)_2(ABS)_2]_n$  with periodical distance of 11.43 Å, which is further linked to generate a two-dimensional structure *via* hydrogen-bonding interactions with an average O-O distance of 2.877 Å (Fig. 2).

#### Experimental

To a mixture of bipy (0.032 g, 0.2 mmol), ABS (0.017 g, 0.1 mmol) and  $Ag_2O$  (0.028 g, 0.05 mmol) in CH<sub>3</sub>OH (10 ml) was added ammonia water resulting in a clear solution. After heating at 323 K for 0.5 h, the solution was evaporated slowly in the dark. Five days later, slightly yellow crystals were formed from the solution.

#### Refinement

H atoms bound to C or N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 Å and N—H = 0.88 Å, and with U(H) set to  $1.2U_{eq}(C, N)$ . A small degree of thermal disorder in O2 and O3 atoms could not be ruled out as reflected by large atomic displacement parameters of these atoms.

**Figures** 



Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level; H-atoms have been excluded for clarity. The symmetry codes for the generated atoms: a (1 - x, -y, 1 - z), b (1 - x, -y, 2 - z), c (x, y, 1 + z), d (x, y, -1 + z), e (1 - x, -y, -z).

Fig. 2. A view of the packing of the title compound along b axis.

## catena-Poly[[bis( $\mu_2$ -4-aminobenzenesulfonato- $\kappa^2$ O:O)disilver]- bis( $\mu_2$ -4,4'-bipyridine- $\kappa^2$ N:N')]

| Crystal data                            |                                              |
|-----------------------------------------|----------------------------------------------|
| $[Ag_2(C_6H_6NO_3S)_2(C_{10}H_8N_2)_2]$ | $F_{000} = 872$                              |
| $M_r = 872.46$                          | $D_{\rm x} = 1.834 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/n$                    | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                     | Cell parameters from 2489 reflections        |
| a = 9.2105 (19)  Å                      | $\theta = 2.5 - 27.0^{\circ}$                |
| b = 15.774 (3) Å                        | $\mu = 1.43 \text{ mm}^{-1}$                 |
| c = 11.433 (2) Å                        | T = 173 (2) K                                |
| $\beta = 108.004 \ (4)^{\circ}$         | Prism, light-yellow                          |
| V = 1579.8 (6) Å <sup>3</sup>           | $0.42 \times 0.13 \times 0.12 \text{ mm}$    |
| 7 = 2                                   |                                              |

### Data collection

| 3375 independent reflections           |
|----------------------------------------|
| 2774 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.023$                  |
| $\theta_{\text{max}} = 27.0^{\circ}$   |
| $\theta_{\min} = 2.3^{\circ}$          |
| $h = -11 \rightarrow 11$               |
| $k = -17 \rightarrow 20$               |
| $l = -13 \rightarrow 14$               |
|                                        |

### Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.032$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.088$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 0.7557P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.11                                                       | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 3375 reflections                                               | $\Delta \rho_{max} = 0.79 \text{ e } \text{\AA}^{-3}$                               |
| 217 parameters                                                 | $\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x           | У             | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|---------------|-------------|---------------------------|
| Agl  | 0.72113 (3) | 0.011584 (16) | 0.56851 (2) | 0.02788 (10)              |
| S1   | 0.43413 (9) | 0.19537 (5)   | 0.48987 (9) | 0.0333 (2)                |
| N1   | 0.7468 (3)  | 0.01972 (15)  | 0.3849 (2)  | 0.0216 (5)                |
| N2   | 0.7473 (3)  | 0.01021 (16)  | 0.7646 (2)  | 0.0250 (6)                |
| C2   | 0.7508 (3)  | 0.01617 (18)  | 0.1402 (3)  | 0.0203 (6)                |
| C12  | 0.1224 (3)  | 0.19650 (18)  | 0.4380 (3)  | 0.0236 (6)                |
| H12A | 0.1175      | 0.1865        | 0.3549      | 0.028*                    |
| C14  | -0.0062 (3) | 0.2155 (2)    | 0.5922 (3)  | 0.0274 (7)                |
| C1   | 0.7521 (3)  | 0.01415 (18)  | 0.0111 (3)  | 0.0211 (6)                |
| 01   | 0.4856 (2)  | 0.10869 (15)  | 0.5186 (2)  | 0.0362 (6)                |
| C11  | 0.2636 (3)  | 0.20524 (19)  | 0.5282 (3)  | 0.0228 (6)                |
| C15  | 0.1367 (4)  | 0.2258 (2)    | 0.6808 (3)  | 0.0299 (7)                |
| H15A | 0.1427      | 0.2368        | 0.7638      | 0.036*                    |
| C10  | 0.6969 (4)  | 0.0780 (2)    | 0.8123 (3)  | 0.0282 (7)                |
| H10A | 0.6607      | 0.1256        | 0.7607      | 0.034*                    |
| C7   | 0.8025 (4)  | -0.0552 (2)   | 0.8414 (3)  | 0.0273 (7)                |
| H7A  | 0.8388      | -0.1036       | 0.8097      | 0.033*                    |
| C16  | 0.2681 (4)  | 0.2204 (2)    | 0.6487 (3)  | 0.0288 (7)                |
| H16A | 0.3641      | 0.2270        | 0.7103      | 0.035*                    |
| C13  | -0.0112 (3) | 0.2024 (2)    | 0.4698 (3)  | 0.0258 (7)                |
| H13A | -0.1072     | 0.1974        | 0.4078      | 0.031*                    |
| C3   | 0.8647 (3)  | -0.02265 (19) | 0.2346 (3)  | 0.0240 (6)                |
|      |             |               |             |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H3A | 0.9463      | -0.0514       | 0.2171     | 0.029*      |
|-----|-------------|---------------|------------|-------------|
| C6  | 0.6367 (3)  | 0.0573 (2)    | 0.2940 (3) | 0.0249 (6)  |
| H6A | 0.5563      | 0.0855        | 0.3141     | 0.030*      |
| C5  | 0.6351 (3)  | 0.0569 (2)    | 0.1740 (3) | 0.0258 (7)  |
| H5A | 0.5547      | 0.0846        | 0.1132     | 0.031*      |
| C4  | 0.8586 (4)  | -0.01927 (19) | 0.3527 (3) | 0.0261 (7)  |
| H4A | 0.9379      | -0.0460       | 0.4155     | 0.031*      |
| O2  | 0.3940 (4)  | 0.2091 (3)    | 0.3591 (3) | 0.0931 (15) |
| N3  | -0.1373 (3) | 0.2149 (2)    | 0.6265 (3) | 0.0483 (9)  |
| H3B | -0.1314     | 0.2211        | 0.7043     | 0.058*      |
| H3C | -0.2269     | 0.2084        | 0.5705     | 0.058*      |
| O3  | 0.5398 (3)  | 0.25465 (19)  | 0.5646 (4) | 0.0858 (13) |
| C8  | 0.8091 (4)  | -0.0555 (2)   | 0.9632 (3) | 0.0260 (7)  |
| H8  | 0.8518      | -0.1024       | 1.0143     | 0.031*      |
| C9  | 0.6953 (4)  | 0.0818 (2)    | 0.9318 (3) | 0.0277 (7)  |
| Н9  | 0.6555      | 0.1304        | 0.9604     | 0.033*      |

## Atomic displacement parameters $(Å^2)$

|                 | $U^{11}$      | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Ag1             | 0.03363 (16)  | 0.03836 (16) | 0.01360 (14) | 0.00271 (10) | 0.01013 (10) | 0.00153 (10) |
| S1              | 0.0248 (4)    | 0.0333 (5)   | 0.0465 (5)   | 0.0039 (3)   | 0.0178 (4)   | 0.0092 (4)   |
| N1              | 0.0276 (13)   | 0.0222 (13)  | 0.0164 (12)  | -0.0020 (10) | 0.0090 (10)  | -0.0024 (10) |
| N2              | 0.0300 (14)   | 0.0297 (14)  | 0.0160 (13)  | 0.0008 (11)  | 0.0082 (11)  | 0.0003 (11)  |
| C2              | 0.0287 (15)   | 0.0198 (14)  | 0.0139 (14)  | -0.0011 (12) | 0.0085 (12)  | -0.0014 (11) |
| C12             | 0.0287 (16)   | 0.0210 (15)  | 0.0198 (15)  | 0.0019 (12)  | 0.0054 (13)  | 0.0011 (12)  |
| C14             | 0.0216 (15)   | 0.0269 (16)  | 0.0351 (19)  | 0.0021 (12)  | 0.0109 (14)  | -0.0026 (14) |
| C1              | 0.0267 (15)   | 0.0211 (14)  | 0.0153 (14)  | -0.0017 (12) | 0.0060 (12)  | -0.0013 (11) |
| 01              | 0.0277 (12)   | 0.0297 (13)  | 0.0522 (16)  | 0.0044 (9)   | 0.0138 (11)  | -0.0036 (11) |
| C11             | 0.0188 (14)   | 0.0234 (15)  | 0.0272 (16)  | 0.0013 (11)  | 0.0086 (12)  | 0.0005 (13)  |
| C15             | 0.0338 (17)   | 0.0356 (18)  | 0.0223 (17)  | -0.0021 (14) | 0.0115 (14)  | -0.0086 (14) |
| C10             | 0.0416 (18)   | 0.0236 (16)  | 0.0194 (16)  | 0.0030 (13)  | 0.0094 (14)  | 0.0033 (13)  |
| C7              | 0.0338 (17)   | 0.0296 (17)  | 0.0196 (16)  | 0.0051 (13)  | 0.0099 (13)  | -0.0007 (13) |
| C16             | 0.0258 (16)   | 0.0323 (18)  | 0.0235 (17)  | -0.0009 (13) | 0.0005 (13)  | -0.0066 (13) |
| C13             | 0.0208 (15)   | 0.0274 (16)  | 0.0251 (16)  | 0.0004 (12)  | 0.0010 (13)  | 0.0013 (13)  |
| C3              | 0.0248 (15)   | 0.0269 (16)  | 0.0198 (16)  | 0.0053 (12)  | 0.0062 (12)  | -0.0004 (12) |
| C6              | 0.0266 (15)   | 0.0278 (16)  | 0.0200 (15)  | 0.0046 (12)  | 0.0071 (12)  | -0.0025 (13) |
| C5              | 0.0257 (15)   | 0.0335 (18)  | 0.0175 (15)  | 0.0061 (13)  | 0.0054 (12)  | 0.0002 (13)  |
| C4              | 0.0288 (16)   | 0.0270 (16)  | 0.0208 (16)  | 0.0046 (13)  | 0.0053 (13)  | -0.0017 (13) |
| O2              | 0.064 (2)     | 0.163 (4)    | 0.070 (2)    | 0.054 (2)    | 0.0474 (19)  | 0.071 (3)    |
| N3              | 0.0304 (16)   | 0.080 (2)    | 0.0402 (19)  | 0.0081 (16)  | 0.0189 (14)  | -0.0024 (18) |
| O3              | 0.0339 (15)   | 0.0463 (18)  | 0.185 (4)    | -0.0175 (14) | 0.045 (2)    | -0.046 (2)   |
| C8              | 0.0345 (17)   | 0.0243 (16)  | 0.0193 (15)  | 0.0075 (13)  | 0.0085 (13)  | 0.0024 (13)  |
| C9              | 0.0390 (18)   | 0.0246 (16)  | 0.0210 (16)  | 0.0068 (13)  | 0.0114 (13)  | 0.0010 (13)  |
|                 |               |              |              |              |              |              |
| Geometric param | neters (Å, °) |              |              |              |              |              |

Ag1—N22.179 (3)C11—C161.387 (4)Ag1—N12.187 (3)C15—C161.372 (5)

| Ag1—01                          | 2.571 (2)   | C15—H15A            | 0.9500    |
|---------------------------------|-------------|---------------------|-----------|
| S1—O3                           | 1.428 (3)   | С10—С9              | 1.372 (4) |
| S1—O2                           | 1.441 (3)   | C10—H10A            | 0.9500    |
| S1—O1                           | 1.451 (2)   | С7—С8               | 1.375 (4) |
| S1—C11                          | 1.763 (3)   | С7—Н7А              | 0.9500    |
| N1—C4                           | 1.345 (4)   | C16—H16A            | 0.9500    |
| N1—C6                           | 1.345 (4)   | C13—H13A            | 0.9500    |
| N2—C10                          | 1.347 (4)   | C3—C4               | 1.370 (5) |
| N2—C7                           | 1.348 (4)   | С3—НЗА              | 0.9500    |
| C2—C3                           | 1.393 (4)   | C6—C5               | 1.368 (4) |
| C2—C5                           | 1.398 (4)   | С6—Н6А              | 0.9500    |
| C2—C1                           | 1.480 (4)   | С5—Н5А              | 0.9500    |
| C12—C13                         | 1.390 (4)   | C4—H4A              | 0.9500    |
| C12—C11                         | 1.394 (4)   | N3—H3B              | 0.8800    |
| C12—H12A                        | 0.9500      | N3—H3C              | 0.8800    |
| C14—N3                          | 1.380 (4)   | C8—C1 <sup>ii</sup> | 1.399 (4) |
| C14—C15                         | 1.400 (4)   | С8—Н8               | 0.9500    |
| C14—C13                         | 1.401 (4)   | C9—C1 <sup>ii</sup> | 1.393 (4) |
| C1—C9 <sup>i</sup>              | 1.393 (4)   | С9—Н9               | 0.9500    |
| C1—C8 <sup>i</sup>              | 1.399 (4)   |                     |           |
| N2—Ag1—N1                       | 167.73 (10) | N2—C10—C9           | 123.4 (3) |
| N2—Ag1—O1                       | 92.98 (9)   | N2-C10-H10A         | 118.3     |
| N1—Ag1—O1                       | 94.93 (9)   | С9—С10—Н10А         | 118.3     |
| O3—S1—O2                        | 115.6 (2)   | N2—C7—C8            | 123.5 (3) |
| O3—S1—O1                        | 111.53 (19) | N2—C7—H7A           | 118.2     |
| O2—S1—O1                        | 109.7 (2)   | С8—С7—Н7А           | 118.2     |
| O3—S1—C11                       | 106.77 (17) | C15-C16-C11         | 121.2 (3) |
| O2—S1—C11                       | 106.38 (16) | C15—C16—H16A        | 119.4     |
| O1—S1—C11                       | 106.33 (14) | C11—C16—H16A        | 119.4     |
| C4—N1—C6                        | 116.7 (3)   | C12—C13—C14         | 120.8 (3) |
| C4—N1—Ag1                       | 123.7 (2)   | C12—C13—H13A        | 119.6     |
| C6—N1—Ag1                       | 119.2 (2)   | C14—C13—H13A        | 119.6     |
| C10—N2—C7                       | 116.8 (3)   | C4—C3—C2            | 119.8 (3) |
| C10—N2—Ag1                      | 117.8 (2)   | С4—С3—НЗА           | 120.1     |
| C7—N2—Ag1                       | 125.3 (2)   | С2—С3—НЗА           | 120.1     |
| C3—C2—C5                        | 116.4 (3)   | N1—C6—C5            | 123.0 (3) |
| C3—C2—C1                        | 121.8 (3)   | N1—C6—H6A           | 118.5     |
| C5—C2—C1                        | 121.8 (3)   | С5—С6—Н6А           | 118.5     |
| C13—C12—C11                     | 119.9 (3)   | C6—C5—C2            | 120.4 (3) |
| C13—C12—H12A                    | 120.0       | С6—С5—Н5А           | 119.8     |
| C11—C12—H12A                    | 120.0       | С2—С5—Н5А           | 119.8     |
| N3—C14—C15                      | 120.3 (3)   | N1—C4—C3            | 123.8 (3) |
| N3—C14—C13                      | 121.4 (3)   | N1—C4—H4A           | 118.1     |
| C15—C14—C13                     | 118.2 (3)   | C3—C4—H4A           | 118.1     |
| C9 <sup>i</sup> C8 <sup>i</sup> | 117.2 (3)   | C14—N3—H3B          | 120.0     |
| C9 <sup>i</sup> —C1—C2          | 121.0 (3)   | C14—N3—H3C          | 120.0     |
| C8 <sup>i</sup> —C1—C2          | 121.8 (3)   | H3B—N3—H3C          | 120.0     |

# supplementary materials

| S1—O1—Ag1                                        | 143.69 (14) | C7—C8—C1 <sup>ii</sup>     | 119.3 (3)  |
|--------------------------------------------------|-------------|----------------------------|------------|
| C16—C11—C12                                      | 119.1 (3)   | С7—С8—Н8                   | 120.4      |
| C16—C11—S1                                       | 120.5 (2)   | C1 <sup>ii</sup> —C8—H8    | 120.4      |
| C12—C11—S1                                       | 120.4 (2)   | C10—C9—C1 <sup>ii</sup>    | 119.8 (3)  |
| C16—C15—C14                                      | 120.6 (3)   | С10—С9—Н9                  | 120.1      |
| C16—C15—H15A                                     | 119.7       | С1 <sup>іі</sup> —С9—Н9    | 120.1      |
| C14—C15—H15A                                     | 119.7       |                            |            |
| N2—Ag1—N1—C4                                     | 49.1 (6)    | N3-C14-C15-C16             | 175.3 (3)  |
| O1—Ag1—N1—C4                                     | 179.0 (2)   | C13-C14-C15-C16            | -2.2 (5)   |
| N2—Ag1—N1—C6                                     | -138.8 (4)  | C7—N2—C10—C9               | -2.1 (5)   |
| O1—Ag1—N1—C6                                     | -8.9 (2)    | Ag1—N2—C10—C9              | 174.4 (3)  |
| N1—Ag1—N2—C10                                    | 102.1 (5)   | C10—N2—C7—C8               | 0.1 (5)    |
| O1—Ag1—N2—C10                                    | -28.0 (2)   | Ag1—N2—C7—C8               | -176.1 (2) |
| N1—Ag1—N2—C7                                     | -81.8 (5)   | C14-C15-C16-C11            | 0.6 (5)    |
| O1—Ag1—N2—C7                                     | 148.2 (3)   | C12-C11-C16-C15            | 0.8 (5)    |
| C3—C2—C1—C9 <sup>i</sup>                         | -147.0 (3)  | S1-C11-C16-C15             | -178.2 (3) |
| C5—C2—C1—C9 <sup>i</sup>                         | 33.1 (4)    | C11—C12—C13—C14            | -1.2 (5)   |
| C3—C2—C1—C8 <sup>i</sup>                         | 33.5 (4)    | N3—C14—C13—C12             | -174.9 (3) |
| C5—C2—C1—C8 <sup>i</sup>                         | -146.4 (3)  | C15—C14—C13—C12            | 2.5 (5)    |
| O3—S1—O1—Ag1                                     | -41.8 (3)   | C5—C2—C3—C4                | 0.0 (4)    |
| O2—S1—O1—Ag1                                     | 87.6 (3)    | C1—C2—C3—C4                | -179.9 (3) |
| C11—S1—O1—Ag1                                    | -157.8 (2)  | C4—N1—C6—C5                | 0.1 (4)    |
| N2—Ag1—O1—S1                                     | 102.2 (3)   | Ag1—N1—C6—C5               | -172.5 (2) |
| N1—Ag1—O1—S1                                     | -68.4 (3)   | N1-C6-C5-C2                | 0.1 (5)    |
| C13-C12-C11-C16                                  | -0.5 (5)    | C3—C2—C5—C6                | -0.2 (4)   |
| C13—C12—C11—S1                                   | 178.4 (2)   | C1—C2—C5—C6                | 179.7 (3)  |
| O3—S1—C11—C16                                    | -37.0 (3)   | C6—N1—C4—C3                | -0.3 (5)   |
| O2—S1—C11—C16                                    | -160.9 (3)  | Ag1—N1—C4—C3               | 172.0 (2)  |
| O1—S1—C11—C16                                    | 82.2 (3)    | C2—C3—C4—N1                | 0.3 (5)    |
| O3—S1—C11—C12                                    | 144.1 (3)   | N2—C7—C8—C1 <sup>ii</sup>  | 1.9 (5)    |
| O2—S1—C11—C12                                    | 20.2 (3)    | N2—C10—C9—C1 <sup>ii</sup> | 2.0 (5)    |
| 01—S1—C11—C12                                    | -96.7 (3)   |                            |            |
| Symmetry codes: (i) $x, y, z-1$ ; (ii) $x, y, z$ | z+1.        |                            |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                                       | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|-------------------------------------------------------------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| N3—H3B····O2 <sup>iii</sup>                                                   | 0.88        | 2.04         | 2.850 (5)    | 153                                                                        |
| N3—H3C····O3 <sup>iv</sup>                                                    | 0.88        | 2.25         | 2.905 (4)    | 131                                                                        |
| Symmetry codes: (iii) $x-1/2$ , $-y+1/2$ , $z+1/2$ ; (iv) $x-1$ , $y$ , $z$ . |             |              |              |                                                                            |





